

North Sydney Girls High School

HSC TRIAL EXAMINATION

Mathematics Extension 2

General Instructions	 Reading Time – 10 minutes Working Time – 3 hours Write using black pen Calculators approved by NESA may be used A reference sheet is provided For questions in Section II, show relevant 				
Total marks: 100	 mathematical reasoning and/or calculations Section I – 10 marks (pages 2 – 5) Attempt Questions 1 – 10 Allow about 15 minutes for this section 				
	 Section II – 90 marks (pages 7 – 13) Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section 				
NAME:	TEACHER:				

STUDENT NUMBER:

Question	1-10	11	12	13	14	15	16	Total
Mark	/10	/14	/16	/15	/15	/14	/16	/100

Section I

10 marks Attempt Questions 1-10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1-10.

1 Given A(1,-2,3) and B(5,0,-1), which of the following is a unit vector in the direction of \overrightarrow{BA} ?

A. -4i - 2j + 4kB. 4i + 2j - 4k

- C. $-\frac{2}{3}i \frac{1}{3}j + \frac{2}{3}k$
- D. $\frac{2}{3}i + \frac{1}{3}j \frac{2}{3}k$

2 Consider the statement: "If it rains then they cancel the game."

If this statement is true, which of the following can be inferred to also be true?

- A. If it doesn't rain, they will not cancel the game.
- B. If they have cancelled the game, it must be raining.
- C. If they have not cancelled the game, it is not raining.
- D. If it doesn't rain, they will cancel the game.
- 3 A particle is in simple harmonic motion and the equation describing its motion is

$$v^2 = 16 + 4x - 2x^2$$

Which of the following gives the maximum displacement S of the particle and the period T of the motion?

- A. S = 4 $T = \pi$
- B. S = 2 $T = \sqrt{2}\pi$
- C. S = 4 $T = \sqrt{2}\pi$
- D. S = 2 $T = \pi$

- 4 Given that z and w are complex numbers such that $\overline{z} + i \overline{w} = 0$ and $\arg(zw) = \pi$, which of the following is the value of $\arg(z)$?
 - A. $\frac{\pi}{4}$
 - B. $\frac{\pi}{2}$
 - C. $\frac{3\pi}{4}$
 - D. $\frac{5\pi}{4}$

5 The vector equation of straight line l_1 is given by $r = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix}$.

A second line l_2 passes through the points A(4,0,1) and B(3,-1,1).

What is the value of the parameter λ at the point of intersection of the two lines?

- A. $\frac{1}{2}$ B. 1 C. 2
- D. 3
- 6 A variable force of *F* Newtons acts on a particle of mass 3 kg so that it moves in a straight line. The velocity of the particle in metres per second is given by $v = 3 - x^2$, where x is the displacement of the particle from a fixed origin.

Which of the following gives the expression for the force F?

- A. F = -2x
- B. F = -6x
- C. $F = 2x^3 6x$
- D. $F = 6x^3 18x$

- 7 For all complex numbers z_1 and z_2 satisfying $|z_1| = 12$ and $|z_2 3 + 4i| = 5$, what is the minimum value of $|z_1 z_2|$?
 - A. 0
 - B. 2
 - C. 7
 - D. 17

8 Consider the statement below.

 $\forall x \in \mathbb{R} \left(x < 1 \Longrightarrow x^2 < 1 \right)$

Which of the following is the negation of this statement?

A.
$$\forall x \in \mathbb{R} (x < 1 \text{ and } x^2 \ge 1)$$

B. $\exists x \in \mathbb{R} (x < 1 \text{ and } x^2 \ge 1)$

C.
$$\forall x \in \mathbb{R} (x \ge 1 \text{ and } x^2 \ge 1)$$

D.
$$\exists x \in \mathbb{R} (x \ge 1 \text{ and } x^2 \ge 1)$$

9 Given that
$$-\frac{1}{2} \le f(x) \le 3$$
 and $-3 \le g(x) \le 2$ for $x \in [0,2]$,

which of the following inequalities is satisfied by $I = \int_0^\infty \left[f(x) - g(x) \right] dx$?

A. $1 \le I \le \frac{5}{2}$ B. $-\frac{5}{2} \le I \le 6$ C. $2 \le I \le 5$

D.
$$-5 \le I \le 12$$

10 Given that f(x+a) = f(a-x) for all values of x, which of the following is NOT necessarily true?

A.
$$\int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx$$

B.
$$\int_0^a f(x-a) dx = \int_0^a f(x) dx$$

C.
$$\int_0^a f(x+a) dx = \int_0^a f(x) dx$$

D.
$$\int_0^a f(2x) dx = \frac{1}{2} \int_0^a f(x) dx$$

Section II

90 marks Attempt Questions 11-16 Allow about 2 hours and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

For questions in Section II, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (16 marks) Use a SEPARATE writing booklet

- (a) Given the complex numbers $z_1 = 2 + i$ and $z_2 = 3 2i$, express $\frac{z_1}{z_2}$ in the form x + iy, 2 where x and y are real numbers. Show all working.
- (b) Consider the polynomial $P(z) = z^3 + 5z^2 + 9z + 5$.
 - (i) Show that z+1 is a factor of P(z). 1

3

(ii) Hence solve P(z) = 0.

(c) The complex numbers z and w are defined as $z = 4\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$ and $w = 1 + i\sqrt{3}$.

(i)Write down the value of
$$\operatorname{Arg}(z)$$
, the principal argument of z.1(ii)Find $\frac{\overline{w}}{z^2}$ in exponential form. Show working.3(iii)Find the set of possible values of n such that $\left(\frac{\overline{w}}{z^2}\right)^n$ is a real number.2

(d) By first decomposing
$$\frac{8x-1}{(2x+1)(x+1)}$$
, find $\int_{2}^{5} \frac{8x-1}{(2x-1)(x+1)} dx$. 4
Give your answer in the form $\ln(A)$

Question 12 (14 marks) Use a SEPARATE writing booklet

(a) (i) Use integration by parts to find $\int \ln x dx$.

(ii) Hence, find
$$\int \frac{\ln(\ln x)}{x} dx$$
. 1

2

(b) Given that $a_n = \sqrt{2 + a_{n-1}}$ for integers $n \ge 1$, and that $a_0 = 1$, use mathematical induction to prove that for $n \ge 1$, $\sqrt{2} < a_n < 2$.

(c) (i) Sketch the region in the Argand plane where
$$\arg\left(\frac{z-2}{z+i}\right) = 0$$
. 1

(ii) Find the Cartesian equation of the locus, stating any restrictions on domain. 2

(d) The two points A(-1,2,3) and B(-1,3,5) lie in a three-dimensional coordinate system.

(i) Find the vector equation of the sphere centred at *A* and passing through *B*. 2

(ii) Determine if the line
$$l_1$$
 defined by $r = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$ is a tangent to the sphere. **3**

(a) Find
$$\int_{0}^{\frac{\pi}{3}} \frac{1}{5+3\cos x} dx$$
. 4

- (b) An object is bobbing up and down with the waves, executing simple harmonic motion. It rises and falls 35 cm about its mean position at a frequency of 30 cycles per minute.
 - Write down an equation for the displacement of the object about the mean position at any given time.
 - (ii) Find the first time the object is rising through a point 10 cm below the mean position. 2

1

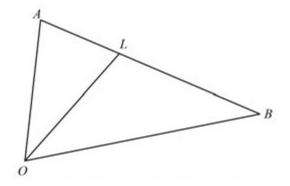
2

3

(c) Consider the statement *S* below:

 $S: \forall x, y \in \mathbb{R}$ If $y^3 + yx^2 \le x^3 + xy^2$ then $y \le x$

- (i) State the contrapositive of the statement *S*.
 - (ii) Hence, prove the statement by proving the contrapositive.
- (d) Consider the triangle *OAB* shown below. *L* is a point on *AB* such that OA: OB = AL: LB.



Let $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$ and OA : OB = p : q.

(i) Show that
$$\overrightarrow{OL} = \frac{q}{p+q}a + \frac{p}{p+q}b$$
. 1

(ii) Use vector methods to establish that OL is the angle bisector of $\angle AOB$.

(a) Find
$$\int \sin^3\theta \cos^3\theta d\theta$$
. 2

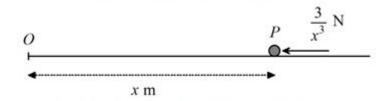
(b) Prove that for all odd positive integers n, $5n^2 - 5$ is divisible by 40.

(c) (i) Show that for all positive integers
$$n$$
, $(z^n - e^{i\theta})(z^n + e^{-i\theta}) = z^{2n} - (2i\sin\theta)z^n - 1$. 2

(ii) Hence solve $z^6 - iz^3 = 1$ giving your answers in exponential form.

(d) A particle P of mass 0.6 kg moves in a straight line on a smooth horizontal surface. 3 Initially the particle is at rest 10 m from a fixed point O.

A force of magnitude $\frac{3}{x^3}$ Newtons acts on the particle in the direction from P to O as shown.



Find the velocity of the particle when it is 2.5 m from O.

(e) Let
$$I_n = \int_0^1 x^n \sqrt{1 - x^2} dx$$
, $n \ge 0$.

Show that $I_n = \frac{n-1}{n+2} I_{n-2}$ for $n \ge 2$.

3

2

3

(a) (i) Use Mathematical Induction to prove that for all positive integer values of n

$$\sum_{r=1}^{n} \cos(2r\theta) = \frac{\sin[(2n+1)\theta] - \sin\theta}{2\sin\theta}$$

(ii) Use the result in (i) to find an expression for $\sum_{r=1}^{n} \cos^2\left(\frac{r\pi}{5}\right)$ and hence find the exact 2 value of $\sum_{r=1}^{32} \cos^2\left(\frac{r\pi}{5}\right)$.

3

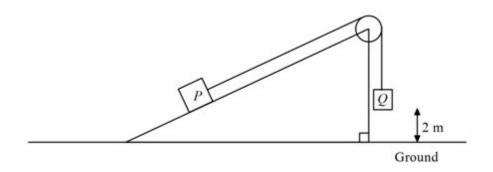
2

(b) (i) Use a suitable substitution to show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$$
 1

(ii) Hence or otherwise, evaluate
$$\int_{0}^{1} \frac{\ln(x+1)}{\ln(2+x-x^{2})} dx.$$
 2

(c) Two particles P and Q of mass M kg and 2M kg respectively are connected by a light inextensible string that passes over a frictionless pulley mounted on top of a smooth inclined ramp of gradient 0.75.

Particle P rests on the inclined ramp and Q is suspended vertically from the pulley 2 metres above the ground as shown in the diagram below.



The particles are released from rest so that Q begins to move down and P moves up the ramp.

(i)	Show that Q has an acceleration of $\frac{7g}{2}$.	2
	\sim 15	

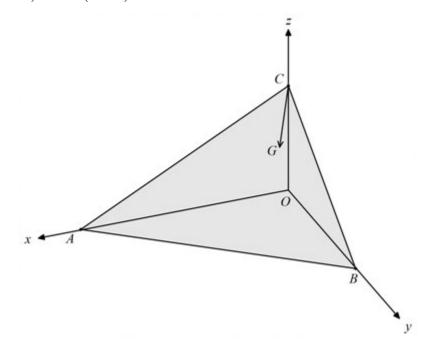
- (ii) Find how long it takes for Q to reach the ground.
- (iii) How much further will *P* travel up the ramp before it comes to rest instantaneously? 2

- (a) (i) Given ω is a non-real root of $x^3 1 = 0$, show that ω is also a root of $x^2 + x + 1 = 0$. 1
 - (ii) Use a proof by contradiction to show that $(x+1)^{2n} + x^{2n} + 1$ is not divisible by $(x^2 + x + 1)$ if *n* is divisible by 3.

3

2

(b) A smooth inclined ramp is positioned on a three-dimensional coordinate system as shown. A(6,0,0), B(0,2,0) and C(0,0,3) are points on the ramp.



A ball of mass m kg is released from C and will roll down the line of steepest gradient.

- (i) \overrightarrow{CG} is along the line of steepest gradient on the ramp. Show that a unit vector in the direction of \overrightarrow{CG} is $\frac{1}{\sqrt{35}}\mathbf{i} + \frac{3}{\sqrt{35}}\mathbf{j} - \frac{5}{\sqrt{35}}\mathbf{k}$. (ii) Show that the net acceleration parallel to the ramp is given by $\ddot{r} = \frac{10}{7} \begin{pmatrix} 1\\ 3\\ -5 \end{pmatrix}$. Use acceleration due to gravity as 10 m/s².
- (iii) Find the location of the ball after it has travelled for 0.5 seconds.

Question 16 continues on Page 13

Question 16 (continued)

(c) It is given that
$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{r!} + \dots$$

(i) Use the Binomial Theorem to show that
$$\left(1+\frac{1}{n}\right)^n < e$$
. 2

(ii) The product
$$P(n)$$
 is defined as $P(n) = \frac{3}{2} \times \frac{5}{4} \times \frac{9}{8} \times \dots \times \frac{2^n + 1}{2^n}$. 3

Use the AM-GM inequality $\frac{x_1 + x_2 + x_3 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 x_3 \dots x_n}$ to show that P(n) < e for all n.

End of paper

5.
$$J_{3}: \begin{pmatrix} 4+\mu \\ 2+\mu \end{pmatrix} = \begin{pmatrix} 1+2\lambda \\ -\lambda \end{pmatrix}$$

(1) $4+\mu = 1+2\lambda$
(2) $2+\mu = -\lambda \Rightarrow \mu = -\lambda-2$ Subjects (1)
(3) $1 = 1$
 $4-\lambda-2 = 1+2\lambda$
 $3\lambda = 1$
 $\lambda = \frac{1}{3}$
(4) $\lambda^{-1} = \frac{1}{3}$
(5) $\nu = 3-x^{2}$
 $\frac{1}{3x} = \frac{1}{3}$
(6) $\nu = 3-x^{2}$
 $\frac{1}{3x} = \frac{1}{3}$
(7) $\frac{1}{3x} = \frac{1}{3}(-5x^{2})^{2}$
 $= \frac{1}{3}x = \frac{1}{3}(-5x^{2})^{2}$
 $= \frac{1}{3}(-5x^{2})^{2}$
 $= \frac{1}{3}(-5x^{2$

9.
$$-\frac{1}{2} \le f(x) \le 3 \qquad -3 \le g(x) \le 2$$
$$-1 \le -g(x) \le 3$$
$$-5 \le \int_{y}^{x} f(x) - g(x) dx \le 12$$

10.
$$f(a+x) = f(a-x). \text{ Function is symmetric about } x = a$$
$$A: \int_{0}^{x} \int_{a(x-x)}^{a(x-x)} = 2 \times \int_{0}^{x} \int_{a(x-x)}^{a(x-x)} dx = \int_{0}^{x} f(-x) dx$$
$$C: \int_{0}^{x} \int_{a(x-x)}^{a(x-x)} = \int_{0}^{x} \int_{a(x-x)}^{a(x-x)} dx = \int_{0}^{x} f(-x) dx$$
$$D: \int_{0}^{x} \int_{a(x-x)}^{a(x-x)} dx = \int_{0}^{x} \int_{a(x-x)}^{a(x-x)} D$$
$$These areas are equal$$

Question 11 (a) $Z_1 = 2+i$ $Z_2 = 3-2i$ $\frac{Z_{1}}{Z_{2}} = \frac{2+i}{3-2i} \times \frac{3+2i}{3+2i}$ $= \frac{6 + 4i + 3i + 2i^{2}}{2^{2} + 2^{2}}$ $= \frac{4+\tau \iota}{\iota^2}$ $= \frac{4}{13} + \frac{1}{13} \hat{b}$ (b) $P(z) = z^3 + 5z^2 + 9z + 5$ (i) consider $P(-1) = (-1)^3 + 5(-1)^2 + 9(-1) + 5$ = -1 + 5 - 9 + 5=0 By the factor theorem (Z+1) is a factor of P(Z) (ii) $P(z) = z^3 + 5z^2 + 9z + 5$ = (2+1) (22+42+5) by inspection $=(2+1)(2^2+42+4+1)$ $= (2+1)((2+2)^2 - \tilde{l}^2)$ = (2+1) (2+2+i) (2+2-i).'. roots of P(Z) =0 are Z=-1, -2+i, -2-i Alternately, solve z+4z+5=0 using quadratic fermula or sum and product of roots

Outprise II (continued)
(c)
$$z = 4\left(\cos(\frac{\pi}{3} - i\sin\frac{\pi}{3}) \quad \omega = 1 + i\sqrt{3}\right)$$

(i) $z = 4\left(\cos(\frac{\pi}{3}) + i\sin(\frac{\pi}{3})\right) \quad \therefore \text{ Arg}(z) = -\frac{\pi}{3}$
(ii) $\overline{\omega} = 1 - i\sqrt{3} \quad \sqrt{3}$
 $z = 4e^{i\frac{\pi}{3}} \quad \sqrt{3}$
 $z = 4e^{i\frac{\pi}{3}} \quad dz \text{ moives Theorem}$
 $\therefore \quad \overline{\omega} = \frac{2e^{i\frac{\pi}{3}}}{i^2} = \frac{1}{i^2}e^{i\frac{\pi}{3}}$
(iii) $\left(\frac{\omega}{z^2}\right)^n = \left(\frac{1}{8}\right)e^{i\frac{\pi\pi}{3}} \quad dz \text{ moives Theorem}$
 $IF \left(\frac{\omega}{z^2}\right)^n \text{ is real } \operatorname{Arg}\left(\frac{\omega}{z^2}\right) = k\pi, kez$
so $n\pi = k\pi$
 $n = 3k$, kez
So $n i \omega$ a multiple of 3.
(d) $\int 4nx dx = x\ln x \int \frac{1}{3} xx dx | u = \ln x | u' = 1$
 $= x\ln x - x + C$

Question 11 (continued) (e) RTP: n=1 u divisible by 8, for odd integers n let n=2k+1, kEZ (n's an odd integer) $n^{2}-1 = (2kH)^{2}-1$ = 4k² + 4k+1 -1 = 4k (K+1) Now either K is even or if K is odd then K+1 is even So k(KH) is even, Let K(KH) = 2m, mEZ then $n^2 - 1 = 4$ (2m) = 2mwhich is divisible by 8.

(a)
$$\int \sin^{2}\theta \cos^{2}\theta d\theta = \int \sin^{2}\theta (1-\sin^{2}\theta) \cos\theta d\theta$$

 $= \int (\sin^{2}\theta - \sin^{2}\theta) \cos\theta d\theta$
 $= \int \sin^{2}\theta - \int \sin^{2}\theta (\cos\theta - \sin^{2}\theta) \cos\theta d\theta$
 $= \int \sin^{2}\theta - \int \sin^{2}\theta (\cos\theta - \sin^{2}\theta) \cos\theta d\theta$
(b) $\arg\left(\frac{g-2}{g+1}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \arg\left(\frac{g+1}{g}\right) = 0$
 $\arg\left(\frac{g-2}{g+1}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \arg\left(\frac{g+1}{g}\right) = 0$
 $\arg\left(\frac{g-2}{g+1}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \arg\left(\frac{g+1}{g}\right) = 0$
 $\arg\left(\frac{g-2}{g+1}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \arg\left(\frac{g+1}{g}\right) = 0$
 $\arg\left(\frac{g-2}{g+1}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \arg\left(\frac{g+1}{g}\right) = 0$
 $\operatorname{arg}\left(\frac{g-2}{g-2}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \arg\left(\frac{g+1}{g}\right) = 0$
 $\operatorname{arg}\left(\frac{g-2}{g-2}\right) = 0$ $\therefore \arg\left(\frac{g-2}{g-2}\right) = \operatorname{arg}\left(\frac{g+1}{g-1}\right)$
(i) $\operatorname{arg}\left(\frac{g-2}{g-2}\right) = 0$ $\operatorname{arg}\left(\frac{g-2}{g-1}\right)$
(i) $\operatorname{arg}\left(\frac{g-2}{g-2}\right) = 0$ $\operatorname{arg}\left(\frac{g-2}{g-1}\right)$
(i) $\operatorname{carlesian}\left(\frac{g-2}{g-1}\right) = 1$
 $\operatorname{arg}\left(\frac{g-2}{g-1}\right) = 1$
 $\operatorname{arg}\left(\frac{g-2}{g-1}$

(c) (i)
$$3 + \frac{1}{2} = -10$$
 (10 cm below mean position)
 $3 + \frac{1}{2} = -10$ (10 cm below mean position)
 $3 + \frac{1}{2} = \frac{1}$

Suestion 12 (continued)
(d)
$$\therefore V = \pi \int_{2}^{4} \left(\frac{-10}{2\pi + 1} + \frac{9}{\pi + 1}\right) dx$$

 $= \pi \left[-5 \ln \left[2\pi + 1\right] + 9 \ln \left[2\pi + 1\right]\right]_{2}^{4}$
 $= \pi \left[\left(-5\ln 9 + 9 \ln 5\right) - \left(-5\ln 5 + 9 \ln 3\right)\right]$
 $\Rightarrow 5.21 \text{ units}^{3} (23P)$

(a)

$$\begin{aligned}
\frac{Question Q}{x = 2 \tan^{-1} t}, \quad \frac{x}{t} \left(0 \right) \left(\frac{\pi}{2} \right), \quad \cos x = \frac{1-t^{2}}{1+t^{2}} \\
\frac{x = 2 \tan^{-1} t}{1+t^{2}}, \quad \frac{x}{t} \left(0 \right) \left(\frac{\pi}{1} \right), \quad \cos x = \frac{1-t^{2}}{1+t^{2}} \\
\frac{dx = \frac{2}{1}}{1+t^{2}}, \quad \frac{dt}{1+t^{2}} \\
& \int_{0}^{\sqrt{2}} \frac{1}{1-\cos x} = \int_{0}^{1} \frac{1}{2-(1-t^{2})} \times \frac{2dt}{1+t^{2}} \\
& = \int_{0}^{1} \frac{2}{2(1+t^{2})-(1+t^{2})} \\
& = \int_{0}^{1} \frac{2}{1+3t^{2}} dt \\
& = \int_{0}^{1} \frac{2}{1+3t^{2}} dt \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{2}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left(\tan^{-1} Q_{5} t \right)_{0}^{1} \\
& = \frac{1}{\sqrt{5}} \left($$

Buestion 13 continued
b)(ii)
$$l_{i}: r_{i} = \begin{pmatrix} -i \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \begin{pmatrix} -i + \mu \\ 4 - 3\mu \\ 2 + 2\mu \end{pmatrix}$$

Sub r_{i} into equation of sphere
 $\left| \begin{pmatrix} -i + \mu \\ 4 - 3\mu \\ 2 + 2\mu \end{pmatrix} - \begin{pmatrix} -i \\ 2 \\ 3 \end{pmatrix} \right| = \sqrt{3}$
 $\left| \frac{\mu}{2 + 2\mu} \right|$
 $\left| \frac{\mu}{2 + 2\mu} \right| = \sqrt{3}$
 $\mu^{2} + (2 - 2\mu)^{2} + (-i + 2\mu)^{2} = S$
 $\mu^{2} + 4 - i 2\mu + 9\mu^{2} + i - 4\mu + 4\mu^{2} = S$
 $\left| \mu \mu^{2} - i 6\mu + S = S$
 $\left| \mu \mu^{2} - i 6\mu + S = S$
 $\left| \mu \mu^{2} - i 6\mu + S = S$
 $\left| \mu \mu^{2} - i 6\mu + S = S$
 $\left| \mu \mu^{2} - i 6\mu + S = S$
 $\left| \mu \mu - 0; \frac{B}{7}$
 $\mu = 0; point is (-i, 4, 2)$
 $\mu = \frac{q}{7}$ point is $(-i, 4, 2)$
 $\mu = \frac{q}{7}$ point is $(-i, 4, 2)$
 $\left| \mu = \frac{q}{7}$ point is $(-i, 4, 2)$
 $\left| \mu = \frac{q}{7}$ point is $(-i, 2\mu)^{2} - \frac{q}{7} + \frac{q}{7}$

Guestion 13 (continued)
(d) m=0.6 At t=0, x=10, V=0 F=-
$$\frac{3}{x^3}$$

F= mQ \therefore 0.6 Q = $-\frac{3}{x^3}$
Q = $-\frac{3}{x^3}$
 $= -\frac{5}{x^3}$
 $\therefore \frac{d}{dx} (\frac{1}{2}x^2) = -\frac{5}{x^3}$
(ntegrate ext. x
 $\int \frac{d}{dx} (\frac{1}{2}x^2) dx = \int \frac{-5}{x^3} dx$
 $\int \frac{d}{dx} (\frac{1}{2}x^2) dx = \int \frac{-5}{-2} (\frac{1}{x^2})_{10}^{2.5}$
 $\left[\frac{1}{2}x^2\right]_{0}^{0} = -\frac{5}{-2} (\frac{1}{2x^2})_{10}^{2.5}$
 $\frac{1}{2}x^2 = \frac{5}{2x} (\frac{1}{2x^2} - \frac{1}{10^2})$
 $y^2 = \frac{5}{x} \times \frac{3}{404}$
 $y^2 = \frac{3}{4}$
 $y = -\frac{53}{2}$ (y < 0 moving left)

Substitute 14
(a) (i)
$$(z^n - e^{i\theta}) (z^n + e^{i\theta}) = (z^n)^+ z^n e^{i\theta} - z^n e^{i\theta} - (e^{i\theta}) (e^{i\theta})$$

 $= z^{2n} - z^n (e^{i\theta} - e^{i\theta}) - e^n$
 $= z^{2n} - z^n (2i \sin \theta) - i$
 $= z^{2n} - (2i \sin \theta) z^n - i$
(i) $z^n - iz^{3-1} = 0$
Using part (i) with $n=3$ and $2\sin \theta = 1$
the equation is equivalent to $\theta = \frac{\pi}{6}$
 $(z^3 - e^{i\frac{\pi}{6}}) (z^3 + e^{i\frac{\pi}{6}}) = 0$
 $z^3 = e^{i\frac{\pi}{6}}$
 $z^3 = e^{i\frac{\pi}{6}}$
 $z = e^{i(\frac{\pi}{6} + 2s\frac{\pi}{6})}, \text{ so } z = e^{i(\frac{\pi}{6} + 2s\pi)}, \text{ so } z$
 $z = e^{i(\frac{\pi}{6} + 2s\frac{\pi}{6})}, \text{ so } z = e^{i(\frac{\pi}{6} + 2s\pi)}, \text{ so } z = e^{i(\frac{\pi}{6} + 2s\pi)}, \text{ so } z = e^{i\frac{\pi}{6}}, e^{-i\frac{\pi}{6}}$
 $z = e^{i\frac{\pi}{6}}, e^{i\frac{\pi}{16}} - \frac{i(\frac{\pi}{16})}{2} = 2e^{i\frac{\pi}{16}}, e^{i\frac{\pi}{16}} = 2e^{$

X2 Trial 2023 Page 14

$$\frac{Question It (continued)}{\int_{0}^{1} dn((2+1))} dx = \int_{0}^{1} \frac{dn (1-x+1)}{dn((2-x))} dx using(1)} = \int_{0}^{1} \frac{dn (1-x+1)}{dn(2-x)} dx using(1)}{\int_{0}^{1} dn((2-x))(1+x)} dx = \int_{0}^{1} \frac{dn (2-x)}{dn((1+x))} dx$$

$$= I = \int_{0}^{1} \frac{dn (x+1)}{dn(2-x)(1+x)} dx + \int_{0}^{1} \frac{dn (2-x)}{dn((2-x))(1+x)} dx$$

$$= \int_{0}^{1} \frac{dn (x+1) + 4n (2-x)}{dn(2-x) + 4n(1+x)} dx = (n(ab)z + a + nb)$$

$$= \int_{0}^{1} dx$$

$$= I$$

$$\therefore I = \frac{1}{2}$$

Question 14 (continued) (c) RTP: $\frac{1}{a+1} + \frac{1}{a+2} + \frac{1}{2a} > \frac{13}{24}$ Test a=2 $LHS = 1 + 1 = 1 + 1 = 1 = 1 = \frac{14}{24}$ LHS>RHS ... stint is true for a=2 Assume true for a=k, KEZ, K72 Prove true for a = K+1 $RTP: _ + _ + _ + ... + _ > 13$ $k+2 \quad k+3 \quad 2(k+1) \quad 24$ $LHS = \frac{1}{k+2} + \frac{1}{k+3} + \frac{1}{2k} + \frac{1}{2k+1} + \frac{1}{2k+2}$ $= \frac{1}{k+1} + \frac{1}{k+2} + \frac{1}{k+3} + \frac{1}{2k} + \frac{1}{2k+1} - \frac{1}{2k+2} + \frac{1}{2$ $> \frac{13}{24} + \frac{1}{2(k+1)} - \frac{1}{k+1}$ by assumption $> \frac{13}{24} + \left(\frac{1}{2k+2} + \frac{1}{2(k+1)} - \frac{1}{k+1}\right)$ $= \frac{13}{24} + \left(\frac{1}{2(k+1)} + \frac{1}{2(k+1)} - \frac{1}{k+1}\right)$ $= \frac{13}{24} + \left(\frac{2!}{2(k+1)} - \frac{1}{k+1}\right)$ = 1324 = RHS. true for a= K+1 when true for a= K Hence, the statement is true by Mathematical Induction

Guestion 14 (continued)
(d)(i)
$$OA = AL = \frac{1}{K}$$

 $OL = OA + AL$
 $= a + \frac{1}{K+1} (AB)$
 $= a + \frac{1}{K+1} (AB)$
 $= a + \frac{1}{K+1} (AB)$
 $= a + \frac{1}{K+1} (B - a) = a + \frac{1}{K+1} B - \frac{1}{K+1} a$
 $= (K+1)A - a + \frac{1}{K+1} B$
 $= \frac{R}{K+1} a + \frac{1}{K+1} B$ as required.
(ii) Let A' and B' be point on OA and OB such that
 $OK' = a$ and $OK' = b$
Let $ON + OK' = ON so that $OM = a + b$
 $OKB'(n' is a rhombus, so ON bisects CBOA (diagonals
of rhombus bisect vertex dragle).
To show that OL bisects ZBOA we read to show
that $OL' is a scalar multiple of OM .
 $OM = a + b = a + b$
 $= \frac{R}{K+1} (\frac{R}{K+1} + \frac{K}{K+1})$
 $= \frac{R+1}{K+1} (\frac{R}{K} + \frac{K}{K+1} + \frac{K}{K})$
 $= \frac{R+1}{K+1} OL$ using (i)
 $OM = a scalar multiple of OL so, D, L, M are collinear
As OM bisects ZBOA than OL bisects ZBOA$$$$

Guestion 14 (continued)
Alternate solution
(d) (i) we read to show that
$$AOL = BOL$$

so $aos AOL = cos BOL$ (angle in $A^{T}a 2^{T}quad$)
($aos AOL = \frac{a \cdot OL}{1211021}$ ($aos BOL = \frac{b \cdot OL}{1211021}$
RTP: $\frac{a \cdot OL}{1211021} = \frac{b \cdot OL}{1211021}$
LHS = $\frac{a \cdot (\frac{b}{k+1} + \frac{a}{k+1} + \frac{b}{k+1})}{1211021}$ ($aos g(i)$
 $= \left(\frac{k}{k+1} + \frac{|a|^2}{|2|} + \frac{1}{k+1} + \frac{a \cdot b}{|2|}\right)$ or $a \cdot a \cdot |a|^2$
 $= \frac{k}{k+1} + \frac{|k|}{|2|} + \frac{a \cdot b}{|2|}$ But $\frac{|a|}{|2|} = \frac{1}{k} \Rightarrow |a| \frac{a |b|}{k}$
 $= \frac{k}{k+1} + \frac{|k|}{|k|} + \frac{k}{k+1} + \frac{a \cdot b}{|k|}$
 $= \frac{k}{k+1} + \frac{|k|}{|k|} + \frac{k}{k+1} + \frac{a \cdot b}{|k|}$
RHS = $\frac{b \cdot OL}{|k|}$
 $RHS = \frac{b \cdot OL}{|k|} + \frac{k}{k+1} + \frac{a \cdot b}{|k|}$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
RHS = $\frac{b \cdot OL}{|k|} + \frac{b \cdot a + \frac{1}{|k|}}{|k|}$ as $b \cdot b = |b|^2$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
RHS = $\frac{b \cdot OL}{|k|} + \frac{b \cdot a + \frac{1}{|k|}}{|k|}$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{b}{|k|} (\frac{k}{k+1} + \frac{a \cdot b}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{k}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{|k|} (\frac{k}{k+1} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{|k|} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{|k|} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{|k|} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{a \cdot b}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{b \cdot A}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{b \cdot A}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{b \cdot A}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{b \cdot A}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{b \cdot A}{|k|}$
 $= \frac{1}{k+1} + \frac{b \cdot A}{|k|} + \frac{b \cdot A}{|k|}$
 $= \frac$

Question 15

a) $I_n = \int x^n \sqrt{1-x^2} dx$ $u = x^{n-1} \qquad v' = x \sqrt{1-x^2} \\ u' = (n-1) x^{n-2} \qquad v' = -1 \times \frac{2}{3} (1-x^2)^{\frac{3}{2}} \\ x^{\frac{3}{2}} = -\frac{2}{3} x^{\frac{3}{2}} (1-x^2)^{\frac{3}{2}}$ $= \int_{1}^{1} x_{u-1} x \sqrt{1-x^{2}} dx$ $= -\frac{1}{3}(1-x^2)^{3/2}$ $= -\frac{1}{3} \left[x^{n-1} (1-x^2)^{3/2} \right]' = \int (n-1)^{n-2} (1-x^2)^{3/2} dx$ $= 0 + \frac{n-1}{3} \left(x^{n-2} \left(1 - x^2 \right) \sqrt{1 - x^2} dx \right)$ $= \frac{n-1}{3} \int_{x^{n-2}}^{x^{n-2}} \sqrt{1-x^2} \, dx - \frac{n-1}{3} \int_{x^{n-1}}^{x^{n-2}} \frac{1-x^2}{3} \, dx$ $\frac{1}{2} = \frac{n-1}{3} \frac{1}{n-2} - \frac{n-1}{3} \frac{1}{2} \frac{1}{n}$ $\left(1+\frac{n-1}{2}\right)T_{n} = \frac{n-1}{3}T_{n-2}$ $\frac{3+n-1}{2} I_n = \frac{n-1}{2} I_{n-2}$ $(n+2)I_{n} = (n-1)I_{n-2}$ $\frac{1}{n} = \frac{n-1}{n+2} + \frac{1}{n-2}$ as required.

Subjection is (continued)
(b) (i)
$$\frac{2}{1+1}$$
 cosol = $\frac{\sin(2n+1)\theta - \sin\theta}{2\sin^2\theta}$
Test n=1
LHS = cosol RHS = $\frac{\sin 3\theta - \sin\theta}{2\sin^2\theta}$
 $= \frac{3\sin\theta - 4\sin^2\theta - \sin\theta}{2\sin^2\theta}$
 $= \frac{3\sin\theta - 4\sin^2\theta - \sin\theta}{2\sin^2\theta}$
 $= \frac{3\sin^2\theta}{2\sin^2\theta}$
 $= \frac{3\sin^2\theta}{2\sin^2\theta}$
 $= 1 - 2\sin^2\theta$
LHS = RHS \therefore hue ($\theta_{1,n=1}$) = cosol
Assume true ($\theta_{1,n=1}$) = cosol
 $\frac{1}{1+1}$ cosol = $\frac{\sin(2k+3)\theta - \sin\theta}{2\sin^2\theta}$
 $\frac{1}{1+1}$ cosol = $\frac{\sin(2k+3)\theta - \sin\theta}{2\cos^2\theta}$
LHS = $\frac{k}{1+1}$ cosol = $\frac{\sin(2k+3)\theta - \sin\theta}{2\cos^2\theta}$
 $\frac{1}{1+1}$ cosol = $\frac{\sin(2k+3)\theta - \sin\theta}{2\sin^2\theta}$
 $\frac{1}{1+1}$ cosol = $\frac{\sin(2k+3)\theta - \sin\theta}{2\sin^2\theta}$
 $\frac{1}{1+1}$ cosol = $\frac{\sin(2k+3)\theta - \sin\theta}{2\sin^2\theta}$
 $\frac{1}{1+1}$ cosol = $\frac{1}{1+1}$ ($\frac{2k+3}\theta - \frac{1}{1+1}$) = $\frac{1}{1+1+1}$ ($\frac{k}{1+1}$) = $\frac{k}{1+1}$ ($\frac{$

Question 15 (b) (ii) $\sum_{r=1}^{n} \cos^{2}\left(\frac{r\pi}{5}\right) = \frac{1}{2} \sum_{r=1}^{n} \left(1 + \cos \frac{2r\pi}{5}\right)$ $=\frac{1}{2}\left[\sum_{r=1}^{\infty}1+\sum_{r=1}^{\infty}\cos\left(\frac{2r\pi}{5}\right)\right]$ $= \frac{1}{2} \left[n + \frac{\sin(2n+1)}{2} - \frac{\sin \pi}{2} \right]$ $\therefore \sum_{t=1}^{32} \cos^2\left(\frac{t\pi}{5}\right) = \frac{1}{2} \left[32 + \frac{\sin 3\pi - \sin \pi}{5} \right]$ $= \frac{1}{2} \left[32 + 0 - \frac{1}{2} \right]$ $= \frac{1}{2} \left[32 - \frac{1}{2} \right]$ $=\frac{63}{4}$

Suestion 15 (continued)
(c) (i) At Q:
$$\int_{T}^{T} 2M\ddot{x} = 2Mg-T(1)$$
 $\int_{T}^{t} \tan \theta = \frac{3}{4}$ $\cos \theta = \frac{4}{4}$
At P: $M\ddot{x} = T-Mgsin\theta$ (2)
Mgsind
(1) + (2): $3M\ddot{x} = 2Mg - Mgsin\theta$
 $3\ddot{x} = 2g - g \times \frac{3}{3}$
 $= \frac{19}{5}$
(i) $\ddot{x} = \frac{19}{15}$ Integrate out t
 $\ddot{x} = \frac{19}{15}$ $t + c$ At $t = 0$ $\ddot{x} = 0$
 $\dot{x} = \frac{19}{15} + c$ At $t = 0$ $\dot{x} = 0$
 $\dot{x} = \frac{19}{15} + c$ At $t = 0$, $x = 0$ \Rightarrow $c = 0$
 $\dot{x} = \frac{19}{15} + c$ At $t = 0$, $x = 0$ \Rightarrow $c = 0$
 $\dot{x} = \frac{19}{15} \pm 1$ Integrate out t
 $x = \frac{19}{15} \pm 2 \times 30$
 $10 + 2 \pm \frac{60}{79}$, $t > 0$
 $= \sqrt{\frac{6}{17}}$

	Question 15 (continued)
(C) (iii)	When Q reaches the ground, the string will go slack so there is no tension.
	At $t = \sqrt{\frac{6}{5}}$, $v = \frac{79}{15}\sqrt{\frac{6}{5}} = \frac{2}{3}\sqrt{42}$ from (ii)
	Reset the clock and the origin.
	At $t=0$, $x=0$, $v_0=\frac{2}{3}\sqrt{42}$
	$AtQ: \mu \dot{\Sigma} = -Mqsin\theta$
	At Q: M $\dot{x} = -Mgsin\theta$ M $gsin\theta$ $\dot{x} = -\frac{3g}{5} = -6$ (g=10)
	v dv = -b
	v dv = -6dx
	$\int v dv = -6 \int dx$
	Vo O
	$\left[\frac{v^2}{2}\right]_{v_0}^{o} = -6 \left(x\right]_{o}^{b}$
	$0 - \frac{V_0^2}{2} = -6(D-0)$
	$41\times^2 4$
	$41 \times 42 = 46D$
	$\Delta = \frac{28}{18}$
	18
	= 1.56 m (200)

Question 16

 $\omega^2 - l = 0$ as ω is a root of $x^2 - l = 0$ (a) (ì) (w-1) (w²+w+1)=0 difference of cubes $\omega = 1$ or $\omega^2 + \omega + 1 = \omega$ As ω is non-real then $\omega^2 + \omega + 1 = 0$ (ii) RTP: If nis divisible by 3 then $(x+1)^2 + x^2 + 1$ is not divisible by z+z+1 For the sake of contradiction, assume that n is divisible by 3 and $(x+1)^{2n} + x^{2n} + 1$ is divisible by x2+ x+1 Then $(x+1)^{2n} + x^{2n} + 1 = (x^{2} + x + 1) Q(x), Q(x) polynomial$ $\int_{-\infty}^{\infty} d\omega = \omega$ $(\omega + 1)^{2n} + \omega^{2n} + 1 = (\omega^{2} + \omega + 1) Q(\omega)$ $= 0 \qquad as \qquad \omega^{2} - \frac{1}{2} = 0$ $= 0 \qquad \text{as } \omega^2 + \omega + 1 = 0$ $(-\omega^2)^{2n} + \omega^{2n} + 1 = 0 \qquad \text{Now } n = 3k, \ K \in \mathbb{Z}$ $(-\omega^2)^{6k} + \omega^{6k} + 1 = 0$ $\omega^2 = 1$ (not of $\chi^2 - 1 = \omega$) $(-1)^{k} (\omega^{3})^{k} + (\omega^{3})^{2k} + 1 = 0$ (+ (+) = 0 3 =0 which is a bound Hence, our assumption is incorrect. . if n'is divisible by 3, (2+1)²ⁿ+ 2²ⁿ+1 is not divisible by 2+2+1

Question 16 (continued)

(b) (ì) CP L AB Vector eqn of line \overrightarrow{AB} : $\Gamma = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} -6 \\ 2 \\ 0 \end{pmatrix}$ Point M on $\overrightarrow{AB} = \begin{pmatrix} 6-6\lambda \\ 2\lambda \\ 0 \end{pmatrix}$ $\vec{CM} = \begin{pmatrix} 6-6\lambda \\ 2\lambda \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 6-6\lambda \\ 2\lambda \\ -3 \end{pmatrix}$ CM is perpendicular to AB $\begin{pmatrix} 6-6\lambda\\ 2\lambda\\ 3 \end{pmatrix} \cdot \begin{pmatrix} -6\\ 2\\ 4 \end{pmatrix} = 0$ $-6(6-6\lambda)+2(2\lambda)=0$ $40\lambda = 36$ $\lambda = \frac{36}{10} = \frac{9}{10}$ $\therefore \vec{Cm} = \begin{pmatrix} 6-6\lambda \\ 2\lambda \\ -3 \end{pmatrix} = \begin{pmatrix} 3/5 \\ 9/5 \\ -5 \end{pmatrix} = \underbrace{3}{5} \begin{pmatrix} 1 \\ 3 \\ -5 \end{pmatrix}$ $\vec{cP} = \frac{3}{5} (\dot{k} + 3\dot{j} - 5K)$ ₹ × √35 $= \underbrace{1}_{(ac} + \underbrace{3}_{ac} - \underbrace{5}_{(ac} + \underbrace{3}_{(ac} - \underbrace{5}_{(ac} + \underbrace{3}_{(ac} - \underbrace{5}_{(ac} + \underbrace{5}_{(ac} - \underbrace{5}_{(ac} + \underbrace{5}_{(ac} + \underbrace{5}_{(ac} - \underbrace{5}_{(ac} + \underbrace{$ (ii) acceleration vector is $\begin{pmatrix} 0\\ 0\\ -10 \end{pmatrix}$. We need the projection of this vector in the direction of CP acceleration down the plane = $\begin{pmatrix} 0 \\ 0 \\ -10 \end{pmatrix} \cdot \begin{pmatrix} 1/35 \\ 3/35 \\ -10 \end{pmatrix} \cdot \begin{pmatrix} 1/35 \\ 3/35 \\ -10 \end{pmatrix}$ $= \frac{50}{105} \left(\frac{1}{105} \left(\frac{1}{105} \right) + \frac{3}{105} \right) - \frac{5}{105} \left(\frac{1}{105} \right)$ $= \frac{50}{35} \begin{pmatrix} 1\\ 3\\ -\kappa \end{pmatrix} = \frac{10}{7} \begin{pmatrix} 1\\ 3\\ -\kappa \end{pmatrix}$

$$\frac{\text{Suestion 1b (continued})}{\tilde{x} = \frac{10}{7} \begin{pmatrix} 1 \\ -5 \end{pmatrix} \text{ from (ii)}}$$

$$\frac{\tilde{x} = \frac{10}{7} \begin{pmatrix} 1 \\ -5 \end{pmatrix} + \frac{1}{7} \text{ At } t = 0 \quad \tilde{y} = 0 \quad \therefore q = 0$$

$$\frac{\tilde{x} = \frac{10}{7} \left(\frac{1}{3} \right) + \frac{1}{7} \text{ At } t = 0 \quad \tilde{y} = 0 \quad \therefore q = 0$$

$$\frac{\tilde{x} = \frac{10}{7} \left(\frac{1}{3} \right) + \frac{1}{7} \text{ At } t = 0 \quad y = \left(\frac{10}{3} \right) \quad \therefore p = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$$

$$\frac{1}{7} = \frac{10}{7} \frac{t^2}{7} \left(\frac{1}{3} \right) + \frac{10}{7} \text{ At } t = 0 \quad y = \left(\frac{10}{3} \right) \quad \therefore p = \begin{pmatrix} 0 \\ 0 \\ 3 \end{pmatrix}$$

$$\frac{x}{7} = \frac{5}{7} t^2 \left(\frac{1}{3} \right) + \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\frac{x}{7} = \frac{5}{7} t^2 \left(\frac{1}{3} \right) + \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\frac{y}{7} = \frac{5}{7} t^2 \left(\frac{1}{3} \right) + \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\frac{y}{7} = \frac{5}{7} \frac{1}{7} + \frac{1}{7} \frac{1}{25} \frac{1}{7} + \frac{53}{25} \frac{1}{7}$$

$$\frac{y}{25} \frac{1}{7} \frac{15}{25} \frac{1}{7} \frac{59}{25} \frac{1}{7}$$

$$\frac{y}{25} \frac{1}{7} \frac{15}{25} \frac{1}{7} \frac{59}{25} \frac{1}{7}$$